ELM – Simulating Plasma Gun Proposal

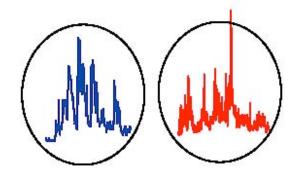
David Ruzic, Robert Stubbers, Travis Gray and Ben Masters

University of Illinois at Urbana Champaign

Overview

- Need for a ELM-Simulating Plasma gun
- Design and Initial Results
 - Helicon, Pre-ionization Source Plasma
 - Pulse Forming Network (PFN)
 - How to merge pulses into an ELM
- Planned Diagnostics
- Budget Needs

Motivation

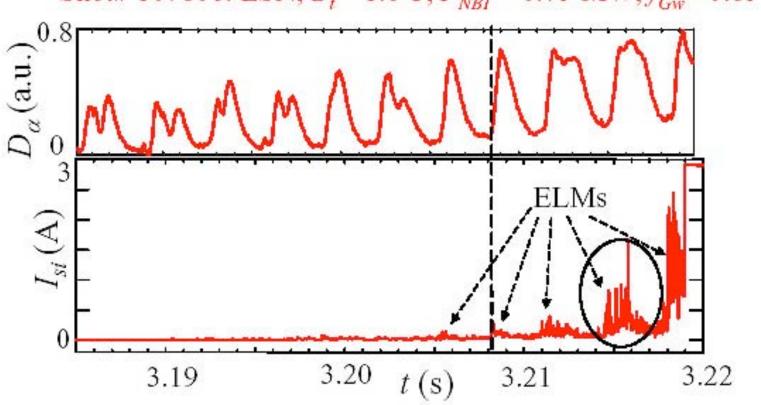

- Why study ELMs?
 - Limiting heat flux for divertor surfaces
 - Largest cause of divertor erosion and impurity production
 - How effective is "vapor / plasma shielding"
- ELM Plasma Material Interactions
 - Test bed for candidate divertor materials
 - Material survivability / erosion / melt layers
 - Surface effects
 - Are there different redeposition rates for mixed materials
 - Changes is surface morphology and composition

Type-I ELM Characteristics

- ELMs emanate from the LCFS
- Higher n_e and T_e at PFC
- An ELM is a series of plasma bursts
 - Each burst is 50 μs
 - Envelope (the ELM) lasts ~1 ms

- To the probe ELMs appear as series of spikes rather than a discrete event as on D_α
- Experimental evidence on several machines^{1,2}
- High heat flux onto the divertor surface

¹C. E. Bush, et al., "ELM Physics in NSTX – Onset and Characteristics", NSTX Research Forum, November 28-30, 2001. Reprinted from ALPS 2003 Meeting, Oakbrook IL.


²D. Rudakov, "Far SOL and Near-Wall Plasma Studies in DIII-D," ALPS Meeting November 2003, Oakbrook, IL.

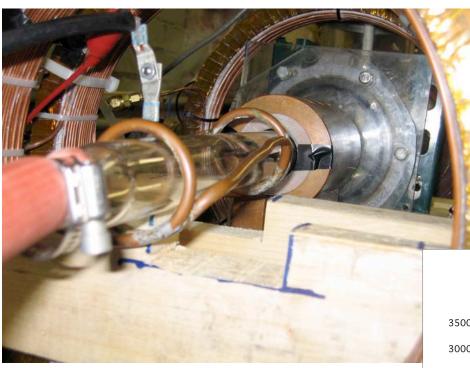
D-IIID data showing ELM structure

Shot# 107806: LSN, $B_t = 1.6 \text{ T}$, $P_{NBI} = 0.75 \text{ MW}$, $f_{Gw} \approx 0.85$

Design Goals

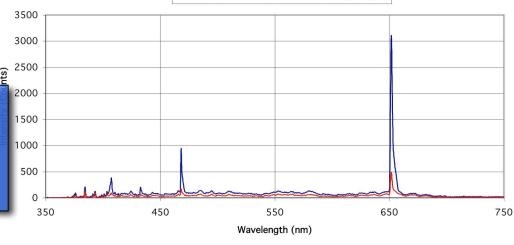
 Comparison of anticipated parameters to NSTX (short term) and ITER (long term)
 Type-I ELMs

ELM Parameter	ITER	NSTX	UIUC (proposed)
Power Loading	$\sim 10 \mathrm{MJ/m^2}$	$< 1 MJ/m^2$	1 MJ/m^2
ELM Event Frequency	\sim 1 -10 Hz	10-20 Hz	single shot
Total ELM Duration	$\sim 0.1 - 1 \text{ ms}$	$\sim 1 \text{ ms}$	$\sim 0.5 \text{ ms}$
Blob Subfrequency	~10-100	~10 kHz	$\sim 10 \text{ kHz}$
	kHz		
Plasma Temperature During	1-2.5 keV	100 eV	100 eV
ELM(~T pedestal)			
Plasma Density During ELM	$\sim 10^{19} \text{m}^{-3}$	$\sim 10^{19} \text{m}^{-3}$	$\sim 10^{19} \text{m}^{-3}$
$(\sim n_{\text{pedes tal}})$			
Magnetic Field Strength At	\sim 1 -5 T	~0.5 T	0.4 T
Divertor (~B _t			


Benefit to US PFC Program

- Domestic experiment directed by US program, relevant to ITER tasks
- Compliments Steady-State Plasma exposure device – PISCES
- Compliment Electron-Beam High Heat
 Flux experiment Sandia Albuquerque
- Provides experimental test-bed for HEIGHTS package – Argonne Nat. Lab.

Helicon Source

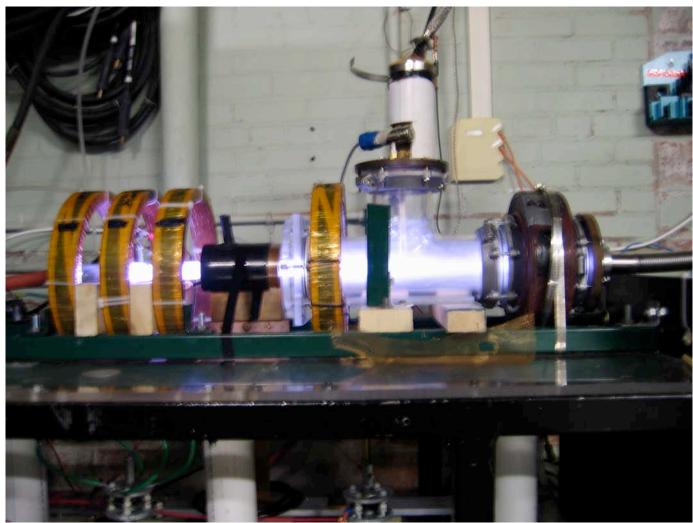

- Pre-ionization Source
- Nagoya Type-III Antenna
- 100 250 W RF Power
- 500 Gauss B field at Antenna

100 W Net Power

- T_e ~ 4-6 eV in the source
- $n_a \sim 10^{19} \text{ m}^{-3}$

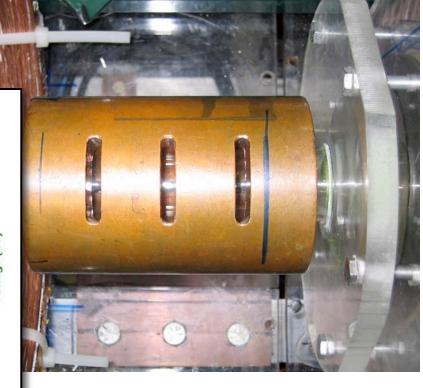
Emission Spectrum of Helicon Pre-Ionization Source of ESP

400 W Net Power -


Provides a high conductivity plasma!

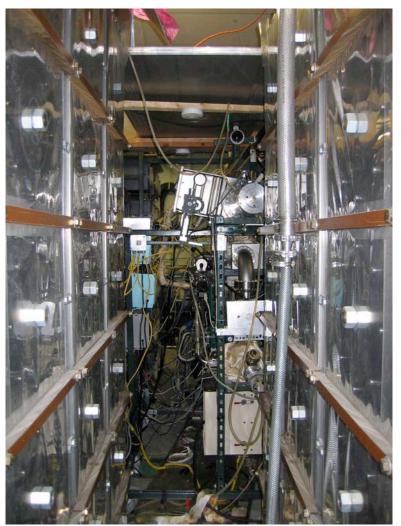
B Field diffusion time $\sim 20 \mu s$

ELM Simulating Plasma Gun Prototype, showing Helicon target plasma



Theta Pinch

- Single Turn
- $\lambda/4 < 10 \ \mu s$
- low inductance

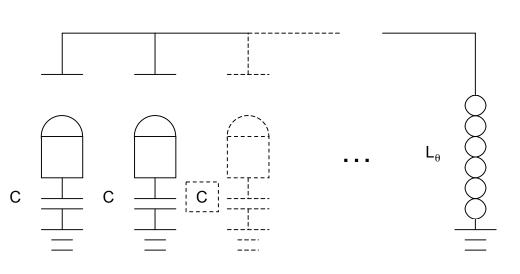


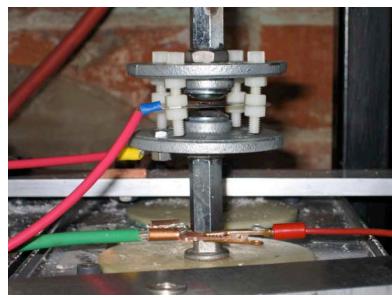
Conical Cross-Section similar to FRC formation / PFC meeting


ILLINOIS

Energy Available

250 kJ CapacitorBank in existence atIllinois of low inductancehigh voltage



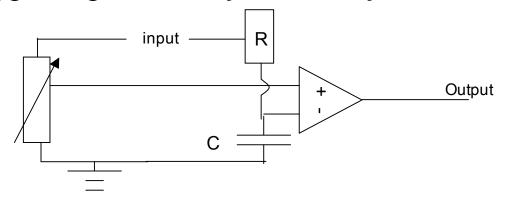


Pulse Forming Network for Multiple Current Pulses

Each Cap, $C = 55 \mu F$

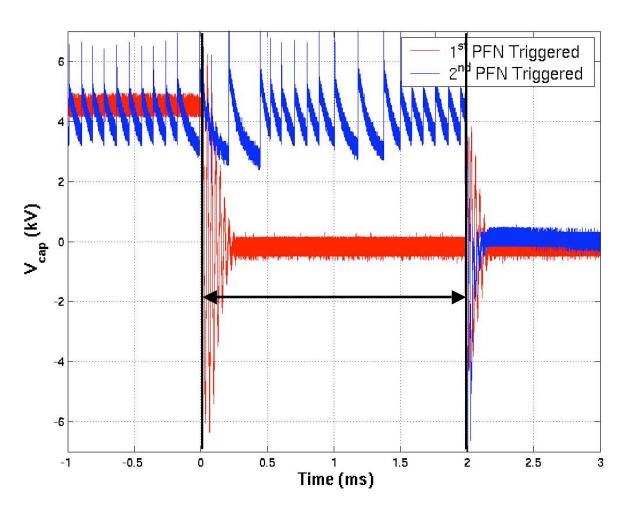
Low cost (\$12) spark gap and trigger/delay circuits

Schematic of Spark Gap Switch

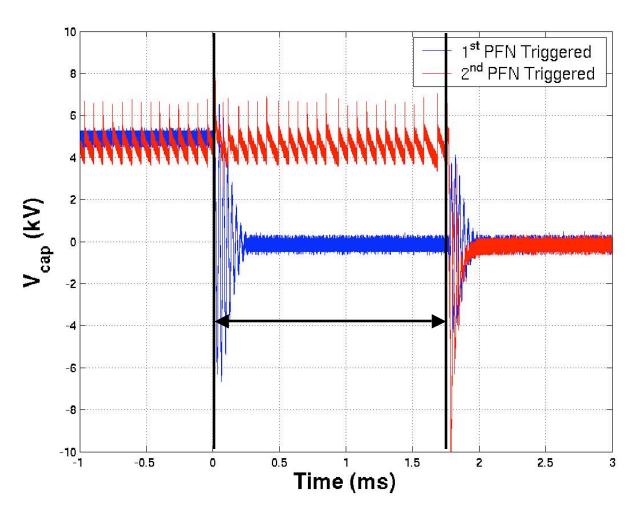

- Directly attached to the Capacitor
- Steel Electrodes
- SS HV Trigger Electrode
 - + 20 kV Trigger signal
 with ramp time ~ 100 μs
- Carriage bolts and stanchions for use in concrete, and automotive ignition coil

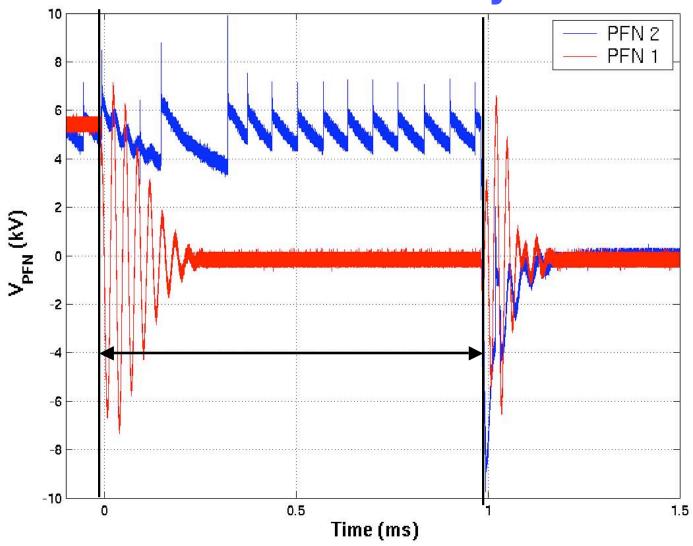
How to create multiple pulses

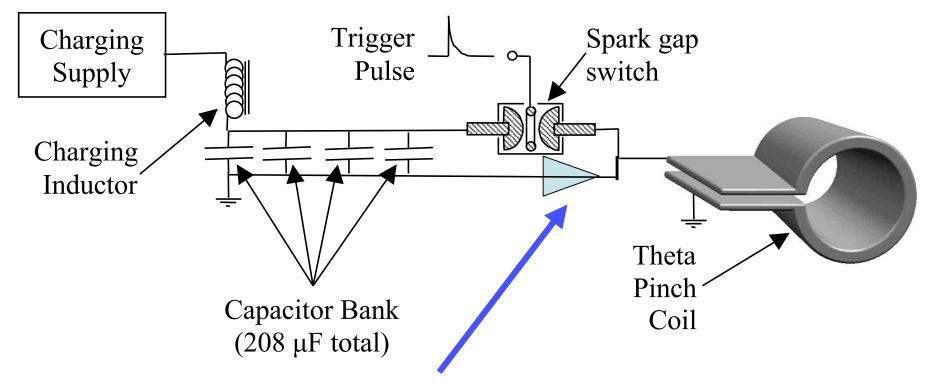
- Create multiple PFN pulses, all within 1 ms
 - Will create a plasma similar to an ELM
- How do we do this?
 - One trigger signal, many RC delay circuits



 Can we fire multiple current pulses into a theta pinch coil?


2 ms Delay


1.75 msec Delay



1 ms Delay

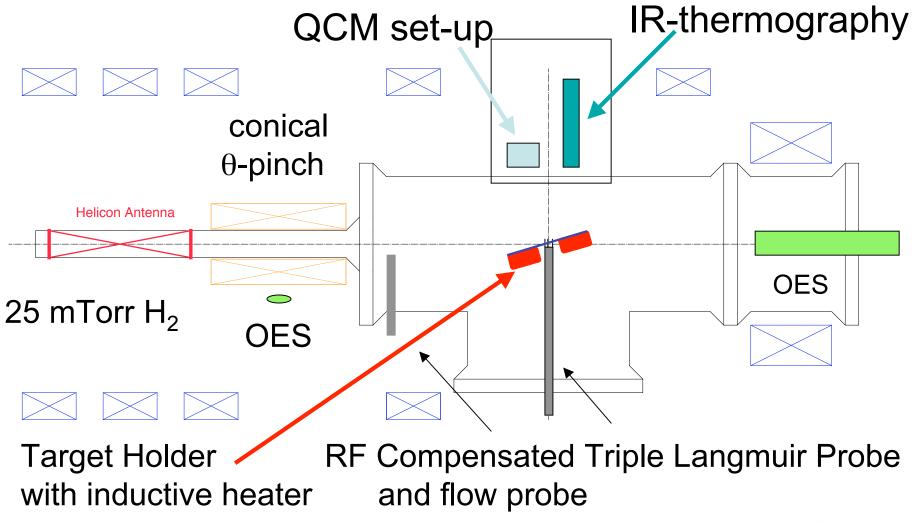
Need high-powered diode to allow trigger from one capacitor group to lie on top of trigger of next capacitor group.

(It is being shipped this week.)

University of Illinois at Urbana-Champaign

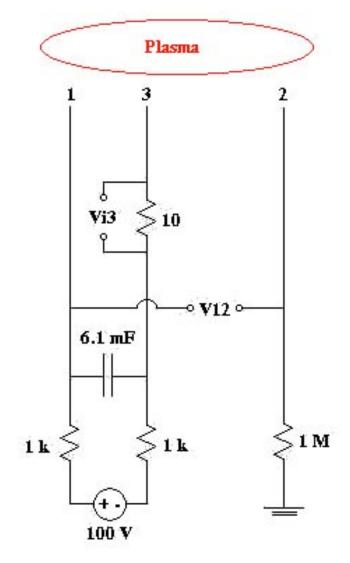
ESP-Gun Features

- Will use pulsed fields to get relevant field strengths – ten times higher than present.
- Target will be at grazing incidence to field and angle can be varied – as in a fusion device.
 - Target bias not used to get energy deposition
- Inductive heater to control initial temperature
 - Plasma not used to control temperature


ESP Gun Diagnostics

- IR thermography of target surface to measure heat flux using fast phototransistors -- will give heat response and energy delivered in combination with thermocouples
- RF compensated triple Langmuir probe will give timeresolved measurements for electron density and temperature
- Langmuir probe pair along axis to measure plasma blob length and velocity along filed lines
- QCM to measure shot by shot deposition of material eroded from target
- Optical spectroscopy for $H\alpha$, $H\beta$, etc. lines, line broadening for ion temperature.
- Material Research lab Center for Microanalysis target surface composition and morphology changes

ESP-gun Diagram

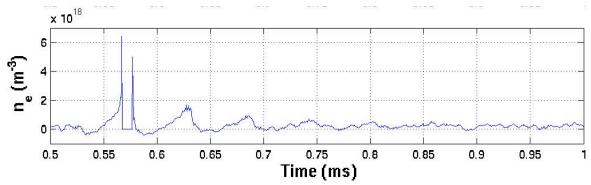


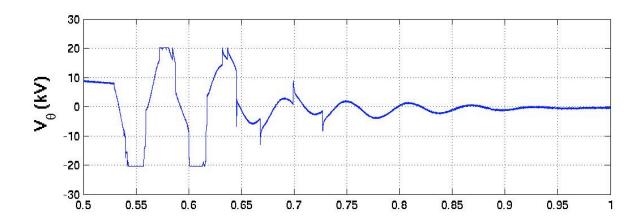
Triple Langmuir Probe

- 3 Probe tips @ Constant Voltage
 - $-V_f < V_1 < V_p$
 - $-V_2 = V_f$
 - V₃ is in ion sat. (-45 V)
 - Yields T_e and n_e as functions of time

$$kT_e(t) \approx 1.44e[V_1(t) - V_2(t)]$$

$$n_e(t) = \frac{i_{sat}(t)}{0.61eA_p} \left(\frac{m_i}{kT_e(t)}\right)^{1/2}$$





Voltage on Coil and

Density on Target

Why fund from PFC money?

- Phase I STTR is in place through Starfire Industries
- Money needed to fund diagnostics to improve chances for phase II proposal, and pay salaries during interim.
- Shows visible vote of confidence to SBIR administration --- (put your money where your mouth is)
- ELM simulating experiment is clear need

Budget

Personnel

One graduate student \$50,000

Equipment

QCM diagnostic1	Ι,	000	
--	----	-----	--

IR thermography 9,000

OES upgrade 10,000

Total \$80,000

Personnel Impact

Personnel	actually expense (incl. ICR, travel, M&S, undergrads)	FY 04 PFC funded	FY 05 PFC funding
Grad: Matt Coventry	60,000	60,000	level
Grad: Wes Olczak	60,000	60,000	
0.5 Grad: Ben Masters (other half STTR)	30,000	30,000	
0.5 Grad: Travis Gray (other half	30,000	30,000	
8.5 Grad: Huatan Qiu	30,000	0	
0.5 Postdoc: Robert Stub bers	50,000	50,000	
One month PI	20,000	0	
Equipment	20,000	23,000	
Total	300,000	253,000	223,000 •••

INTERACTION GROUP University of Illinois at Urbana-Champaign

Summary

- ELMS need more study and simulation
- Initial ESP Gun tests are promising
 - Established a high conductivity, pre-existing plasma with high density.
 - Initial diagnostics show plasma pulses downstream from conical theta pinch
 - Have identified areas to work on know solutions (only 2 months since initiation of effort)
- Cost effective addition to US PFC community with clear ties to multiple groups

